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Abstract

One of the major challenges in ultrascale systems is the effective scheduling of complex jobs within strict timing constraints. The distributed and
heterogeneous system resources constitute another critical issue that must be addressed by the employed scheduling strategy. In this paper, we
investigate by simulation the performance of various policies for the scheduling of real-time directed acyclic graphs in a heterogeneous distributed
environment. We apply bin packing techniques during the processor selection phase of the scheduling process, in order to utilize schedule gaps
and thus enhance existing list scheduling methods. The simulation results show that the proposed policies outperform all of the other examined
algorithms.
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I. Introduction

The rapid developments in computing and communication tech-
nologies have led to the emergence of ultrascale computing, which
provides a large-scale, heterogeneous distributed platform for the
processing of complex jobs [1, 2, 3, 4]. The sustainability of a com-
puting environment of such scale and complexity is one of the most
crucial aspects of ultrascale computing.

I.1 Motivation

One of the major challenges in ultrascale systems is the effective
scheduling and processing of a large number of interdependent tasks
within strict timing constraints. Such tasks often have precedence
constraints among them and thus form a real-time directed acyclic
graph (DAG), with an end-to-end deadline. In case a real-time job
cannot meet its deadline, then depending on its criticality, its result
will be useless or even worse, this may have catastrophic conse-
quences on the environment under control [5]. The distributed and
heterogeneous resources of the target system constitute another criti-
cal issue that must be addressed during the scheduling of real-time
complex jobs [6].

I.2 Contribution

We investigate by simulation the performance of various policies for
the scheduling of real-time DAGs in a heterogeneous distributed
environment. Our goal is to apply effective techniques during the
scheduling process, in order to guarantee that every real-time job
will meet its deadline.

I.3 Related Work

A large number of job scheduling techniques have been developed
and studied in the literature [7, 8, 9, 10, 11, 12, 13]. The most com-

monly used real-time scheduling algorithm is the Earliest Deadline
First (EDF) [14]. According to this policy, the job with the earliest
deadline has the highest priority for execution. An efficient and
practical method for scheduling directed acyclic graphs, is the list
scheduling approach, according to which the tasks are arranged in a
prioritized list. Subsequently, each task is allocated to the proces-
sor that minimizes a cost function, such as the task estimated start
time [15]. A simple list scheduling algorithm is the Highest Level
First (HLF) [16], which prioritizes each component task according
to the longest path from the particular task to an exit task in the
DAG.

Based on the observation that idle time slots may form in the
schedule of a processor due to the data dependencies of the tasks in
a DAG, Kruatrachue and Lewis in [17] propose the Insertion Schedul-
ing Heuristic (ISH). According to this method which is based on HLF,
during the processor selection phase, a task may be inserted into an
idle time slot in a processor’s schedule, as long as it does not delay
the execution of the succeeding task in the schedule and provided
that it cannot start earlier on any other processor. Topcuoglu et
al. in [18] present the Heterogeneous Earliest Finish Time (HEFT) list
scheduling strategy, which is essentially an alternative version of
ISH, adapted for heterogeneous systems.

An improved version of HEFT is presented in [15] by Arabnejad
and Barbosa. It introduces a look ahead feature based on an op-
timistic cost table. Jiang et al. in [19] present a novel clustering
algorithm, the Path Clustering Heuristic with Distributed Gap Search
(PCH-DGS), for the scheduling of multiple DAGs in a heteroge-
neous cloud. Their proposed method tries to insert each group of
tasks into the first available idle time slot in a processor’s schedule
(a DAG’s tasks are partitioned into groups in an attempt to mini-
mize the communication cost between them). In case the time gap
cannot accommodate all of the tasks of the group, the rest of the
group’s tasks are inserted into the next available schedule gap of
the same or other processor.
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All of the above algorithms are static and do not take into account
any timing constraints. Moreover, they essentially utilize schedule
gaps according to the First Fit bin packing technique [20]. Cheng
et al. propose in [21] a scheduling heuristic, Least Space-Time First
(LSTF), that takes into account both the precedence and the timing
constraints among the tasks. However, their algorithm does not uti-
lize any schedule idle time slots. In this paper, we apply various bin
packing techniques (First Fit, Best Fit and Worst Fit) during the pro-
cessor selection phase of the scheduling process, in order to utilize
schedule gaps and thus enhance existing list scheduling methods.
Moreover, our policies are suitable for the dynamic scheduling of
multiple real-time DAGs.

II. System and Workload Models

The real-time complex jobs arrive in a Poisson stream with rate λ
at a heterogeneous cluster that consists of a set of q fully connected
processors. Each processor pi serves its own local queue of tasks
(it has its own local memory) and has an execution rate μi. The
transfer rate between two processors pi and pj is denoted by νij. The
processor execution rates and the communication links data transfer
rates may vary. The heterogeneous cluster is dedicated to real-time
jobs and it may be part of a computational grid or cloud. The jobs
arrive at a central scheduler [22], where their unscheduled tasks
wait in a global waiting queue until they get ready to be scheduled.
A task becomes ready to be scheduled when it has no predecessors
or when all of its parent tasks have finished execution.

The heterogeneity factor HF of the system denotes the differ-
ence in the speed of the processors, as well as in the trans-
fer rate of the communication links. The execution rate of
each processor in the system is uniformly distributed in the
range [μ · (1− HF/2) , μ · (1 + HF/2)], where μ is the mean ex-
ecution rate of the processors. The data transfer rate of
each communication link is uniformly distributed in the range
[ν · (1− HF/2) , ν · (1 + HF/2)], where ν is the mean data transfer
rate of the communication links.

Each job that arrives at the cluster is a directed acyclic graph
G = (V, E), where V is the set of the nodes of the graph and E is the
set of the directed edges between the nodes. Each node represents a
component task ni, whereas a directed edge eij between two tasks ni
and nj represents the data that must be transmitted from task ni to
task nj. Each node ni in a DAG has a weight wi, which denotes its
computational volume (i.e. the amount of computational operations
needed to be executed). The computational cost of the task ni on a
processor pj is given by:

Comp(ni, pj) = wi/μ j (1)

where μ j is the execution rate of processor pj. The level Li of a
task ni is the length of the longest path from the particular task
to an exit task. The length of a path in the graph is the sum of
the computational and communication costs of all of the tasks and
edges, respectively, on the path.

Each edge eij between two nodes ni and nj has a weight cij which
represents its communication volume (i.e. the amount of data needed
to be transmitted between the two tasks). The communication cost
of the edge eij is incurred when data are transmitted from task ni
(scheduled on processor pm) to task nj (scheduled on processor pn)

and is defined as:

Comm
(
(ni, pm), (nj, pn)

)
= cij/νmn (2)

where νmn is the data transfer rate of the communication link be-
tween the processors pm and pn.

The communication to computation ratio CCR of a job is the ratio
of its average communication cost to its average computational cost
on a target system and is given by:

CCR =
∑eij∈E Comm(eij)

∑ni∈V Comp(ni)
(3)

where V and E are the sets of the nodes and the edges of the job
respectively. Comm(eij) is the average communication cost of the
edge eij over all of the communication links in the system, whereas
Comp(ni) is the average computational cost of the task ni over all of
the processors in the system. An example task graph is illustrated
in figure 1.

Figure 1: An example DAG with two entry tasks and five exit tasks. The
number in each node denotes the average computational cost of the repre-
sented task. The number on each edge denotes the average communication
cost between the two tasks that it connects. The critical path (i.e. the
longest path) of the graph is depicted with thick arrows.

III. Scheduling Strategies

In order to schedule the ready tasks in the global waiting queue, a
list scheduling heuristic is employed. This method consists of two
phases: (a) a task selection phase and (b) a processor selection phase.
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III.1 Task Selection Phase

Each task is assigned a priority according to one of the following
policies:

• Earliest Deadline First (EDF): the priority value of each task
is equal to the absolute end-to-end deadline of its job. The
task with the smallest priority value has the highest priority
for scheduling.

• Highest Level First (HLF): the priority value of each task is
equal to its level. The task with the largest priority value has
the highest priority for scheduling.

• Least Space-Time First (LSTF): the priority value of a task ni
is equal to its space-time STi parameter, which is defined as
STi(t) = D− t− Li, where D is the absolute end-to-end dead-
line of the task’s job, t is the current time instant and Li is the
task’s level.

The tasks are arranged in a list, according to their priority. The task
with the highest priority for scheduling is placed first in the list.
In case two or more tasks have the same priority value, they are
arranged in descending order of average computational costs.

III.2 Processor Selection Phase

Once a task is selected by the scheduler, it is allocated to the proces-
sor that can provide it with the earliest estimated start time EST (ties
are broken randomly). The EST of a ready task ni on a processor pn
is given by:

EST(ni, pn) = max {Tdata(ni, pn), Tidle(ni, pn)} (4)

where Tdata(ni, pn) is the time at which all input data of task ni
will be available on processor pn, whereas Tidle(ni, pn) is the time at
which pn will be able to execute task ni.

In order to calculate the term Tidle(ni, pn), the potential position
of task ni on processor pn is determined. This is the position at
which the task ni would be placed according to its priority in the
local waiting queue of processor pn, if it was actually assigned to
that particular processor. An alternative, more effective method to
determine the potential position of a task in a processor’s queue is
described below.

III.3 Alternative Method of Potential Position Cal-
culation

According to our proposed method, during the processor selection
phase of the scheduling process, the potential position of a ready
task in a processor’s queue is determined by taking into account not
only the task’s priority, but also the idle time slots in the processor’s
schedule that can be utilized. Specifically:

• Step 1: We first find the initial potential position at which the
ready task ni would be placed in the processor’s queue, accord-
ing to its priority and so that it does not precede the task that is
placed after the last exploited idle time slot in the schedule of
the processor. The scheduled tasks placed in the area between
the head of the queue and the initial potential position of task
ni, form the exploitable area of the queue.

• Step 2: The tasks in the exploitable area of the queue are ex-
amined whether they can give idle time slots, starting from the
task at the head of the queue. An idle time slot is candidate for
exploitation by the ready task ni only when it can accommo-
date its computational cost. Moreover, task ni must not delay
any succeeding tasks in the processor’s queue.

The task is inserted into an idle time slot according to one of
the following bin packing policies:

– First Fit (FF): the task is placed into the first idle time slot
where its computational cost fits.

– Best Fit (BF): the task is placed into the idle time slot
where its computational cost fits and where it leaves the
minimum unused time possible.

– Worst Fit (WF): the task is placed into the idle time slot
where its computational cost fits and where it leaves the
maximum unused time possible.

The above procedure has as a result the calculation of the final
potential position of the ready task ni.

The pseudocode for the method described above is given in algo-
rithm 1. The scheduling method used in this paper is an enhanced
version of the one described in our previous work in [23]. Specifi-
cally, in this paper, in case a job misses its deadline, not only are its
scheduled tasks that are waiting in processor local queues aborted,
but also, all of the other tasks that are waiting in the particular
queues are rescheduled (on the same processors), according to their
priority. This is necessary, due to the fact that a task removal from
a queue may lead to the cancellation of utilized idle time slots or to
the creation of new ones that could be exploited by other tasks that
are waiting in the queue. Other differences with our previous work
in [23] include: (a) the CCR parameter is defined differently in this
paper and (b) different values for the simulation input parameters
are used.

IV. Performance Evaluation

IV.1 Performance Metric

The performance of the investigated scheduling policies was eval-
uated by simulation. In order to have full control on all of the
required system and workload parameters, we implemented our
own discrete-event simulation program in C++. As a performance
metric, the job guarantee ratio JGR was employed, which is defined
as:

JGR =
TN JG
TN JA

(5)

where TN JG is the total number of jobs guaranteed, i.e. the total
number of jobs that met their deadline. TN JA is the total number
of job arrivals at the system, during the time period the system was
observed.

IV.2 Simulation Input Parameters

In our simulation experiments we used synthetic workload, in or-
der to obtain unbiased results. The task graphs were generated ran-
domly, using our own custom DAG generator, as described in [24].
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Algorithm 1 Alternative method of potential position calculation.
Input: A ready task ni and a processor pn.
Output: Final potential position of task ni in pn’s queue.
1: find initialPotentialPosition of task ni in pn’s queue
2: determine exploitable area of pn’s queue
3: f inalPotentialPosition← initialPotentialPosition
4: spareTime← −1
5: get first task nj in exploitable area of pn’s queue
6: repeat
7: if task nj forms a schedule hole then
8: if Comp(ni, pn) ≤ Tdata(nj, pn)− EST(ni, pn) then
9: if Bin Packing Policy = First Fit then

10: f inalPotentialPosition← currentQueuePosition
11: return f inalPotentialPosition
12: else if Bin Packing Policy = Best Fit then
13: if spareTime = −1 or spareTime> spareTimeO f ThisScheduleHole then
14: spareTime← spareTimeO f ThisScheduleHole
15: f inalPotentialPosition← currentQueuePosition
16: end if
17: else if Bin Packing Policy = Worst Fit then
18: if spareTime < spareTimeO f ThisScheduleHole then
19: spareTime← spareTimeO f ThisScheduleHole
20: f inalPotentialPosition← currentQueuePosition
21: end if
22: end if
23: end if
24: end if
25: get next task nj in exploitable area of pn’s queue
26: until all tasks in exploitable area of pn’s queue are examined
27: return f inalPotentialPosition

The simulation input parameters are summarized in table 1. The
computational volume of a task in a graph is exponential with mean
w. The communication volume of an edge is exponential with mean
c. The relative deadline of each job is uniformly distributed in the
range [CPL, 2CPL], where CPL is the length of the critical (i.e. the
longest) path in the graph. The heterogeneity factor of the system
is considered to be equal to HF = 0.5. That is, the target system is
considered to feature a moderate degree of heterogeneity.

Parameter description Value
Number of processors in the system q = 64
Mean execution rate of processors μ = 1
Mean data trans. rate of comm. links ν = 1
Heterogeneity factor HF = 0.5
Number of tasks in each job a ∼ U[1, 64]
Arrival rate of the jobs λ = {0.2, 0.25, 0.3, 0.35}
Relative deadline of each job RD ∼ U[CPL, 2CPL]
CCR of the jobs CCR = {0.1, 1, 10}
Mean comp. volume of the tasks w = 10 (CCR = 0.1) and

w = 1 (CCR = {1, 10})

Table 1: Simulation input parameters.

IV.3 Simulation Results

We investigated the performance of the scheduling strategies in-
cluded in table 2, with respect to the arrival rate of the jobs, for
DAGs with various communication to computation ratios:

• computationally intensive DAGs (CCR = 0.1);

• moderate DAGs (CCR = 1);

• communication intensive DAGs (CCR = 10).

Scheduling Task Selection Phase Processor Selection Phase
Strategy (task prioritization) (utilization of idle time slots)
EDF Earliest Deadline First No
EDF_FF Earliest Deadline First First Fit
EDF_BF Earliest Deadline First Best Fit
EDF_WF Earliest Deadline First Worst Fit
HLF Highest Level First No
HLF_FF Highest Level First First Fit
HLF_BF Highest Level First Best Fit
HLF_WF Highest Level First Worst Fit
LSTF Least Space-Time First No
LSTF_FF Least Space-Time First First Fit
LSTF_BF Least Space-Time First Best Fit
LSTF_WF Least Space-Time First Worst Fit

Table 2: Examined scheduling strategies.

Figure 2: JGR vs. λ for CCR = 0.1.

Figures 2, 3 and 4 show the simulation results in each of the above
cases, respectively.

The simulation results suggest that the scheduling strategies that
employ the EDF policy in the task selection phase, exhibit better
performance than the strategies that employ the HLF and the LSTF
policies. This is more obvious in the case of computationally inten-
sive DAGs. Furthermore, the proposed alternative versions of the
scheduling algorithms that utilize idle time slots in the processor se-
lection phase, outperform their respective counterparts that do not
utilize idle time gaps.

Figure 5 shows the average improvement in the system perfor-
mance for the proposed scheduling policies, compared to their
counterpart methods that do not utilize schedule gaps. The im-
provement is more apparent in the case of computationally inten-
sive workload. Specifically, the average improvement in this case
is shown in table 3 for each scheduling strategy. Even though the
scheduling strategies that employ the HLF and the LSTF policies in
the task selection phase benefit more by the utilization of idle time
slots in the processor selection phase than the respective strategies
that use EDF, the latter outperform their corresponding counter-
parts.
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Figure 3: JGR vs. λ for CCR = 1.

Figure 4: JGR vs. λ for CCR = 10.

V. Conclusions and Future Directions

In this paper, we investigated by simulation the performance of
various policies for the scheduling of real-time DAGs in a hetero-
geneous distributed environment. We applied bin packing tech-
niques during the processor selection phase of the scheduling pro-
cess, in order to utilize schedule gaps and thus enhance existing list
scheduling algorithms.

The simulation results suggest that in the case where the utiliza-
tion of idle time slots is based on the Best Fit bin packing technique,
the system exhibits better performance than in the case where the
First Fit and the Worst Fit policies are used. Overall, the proposed
EDF_BF scheduling strategy outperforms all of the other examined
algorithms.

Ultrascale systems may utilize multicore architectures. Moreover,
energy efficiency and fault tolerance are vital aspects of their sus-
tainability [25, 26]. Therefore, our future research plans include the
adaptation of our proposed scheduling strategies in order to meet

Figure 5: The average improvement (%) in the system performance for the
proposed scheduling strategies, compared to their counterpart policies that
do not utilize idle time slots.

Scheduling Average
Strategy Improvement in JGR
EDF_FF 1.89%
EDF_BF 2.69%
EDF_WF 1.60%
HLF_FF 6.27%
HLF_BF 11.22%
HLF_WF 4.32%
LSTF_FF 3.45%
LSTF_BF 5.86%
LSTF_WF 3.31%

Table 3: The average improvement in the system performance for the pro-
posed scheduling strategies, in the case of computationally intensive work-
load.

those needs.
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